Высылайте решения задач, с которыми справитесь, не позднее 15 ноября по электронной почте kvantik@mccme.ru или обычной почтой по адресу:
119002, Москва, Б. Власьевский пер., д. 11, журнал «Квантик».
В письме кроме имени и фамилии укажите город, школу и класс, в котором вы учитесь, а также обратный адрес.
Задачи конкурса печатаются в каждом номере, а также публикуются на сайте www.kvantik.com. Итоги будут подведены в конце года. Участвовать можно, начиная с любого тура. Победителей ждут дипломы журнала «Квантик», научно-популярные книги, диски с увлекательными математическими мультфильмами.
Желаем успеха!
VIII ТУР

37. В записи * 1 * 2 * 4 * 8 *16 * 32 * 64 = 101 вместо звёздочек поставьте знаки «+» или «–» так, чтобы равенство стало верным.
38. На вечеринку собрались семь человек, среди которых есть лжецы, которые всегда лгут, и рыцари, которые всегда говорят правду. После того, как все уселись за круглый стол, первый сказал второму: «Ты лжец». Услышав это, второй назвал лжецом третьего, третий – четвёртого, четвёртый – пятого, пятый – шестого, шестой – седьмого. А кем назвал седьмой первого?
39. Гриша и Коля играют в такую игру. На горизонтальной плоскости вырезаны два круглых отверстия – бильярдные лузы.
Гриша отмечает точку A вне луз, Коля ставит в A точечный бильярдный шарик и проводит через A любую прямую, какую захочет.
Затем Гриша ударяет по шарику вдоль проведённой прямой в любом из двух направлений. Если Гриша попадет в лузу – он выиграл, если не попадет – выиграл Коля. Может ли Гриша действовать так, чтобы заведомо выиграть, как бы ни играл Коля?
40. В большую шкатулку положили 10 шкатулок поменьше. В некоторые из меньших шкатулок положили по 10 шкатулок ещё поменьше. В некоторые из самых маленьких шкатулок положили по 10 шкатулок еще поменьше, и так далее. В конце концов, оказалось ровно 222 шкатулки с содержимым. А сколько пустых шкатулок?
И помните: присоединиться к участию – не поздно никогда!