?

Log in

No account? Create an account

Предыдущая запись | Следующая запись

Конкурс из № 1, 2014

Приглашаем всех попробовать свои силы в нашем конкурсе. Высылайте решения задач, с которыми справитесь, не позднее 20 февраля по электронной почте kvantik@mccme.ru или обычной почтой по адресу: 119002, Москва, Б. Власьевский пер., д. 11, журнал «Квантик».

В письме кроме имени и фамилии укажите город, школу и класс, в котором вы учитесь, а также обратный адрес.

Задачи конкурса печатаются в каждом номере, а также публикуются на сайте www.kvantik.com. Итоги будут подведены в конце года. Участвовать можно, начиная с любого тура. Победителей ждут дипломы журнала «Квантик», научно-популярные книги, диски с увлекательными математическими мультфильмами.

Желаем успеха!
1. В клетке было 7 верблюдов и работник зоопарка Вениамин. Каждый верблюд плюнул 3 раза и получил 2 плевка от товарищей. Сколько плевков получил Вениамин? (Верблюды не промахиваются и выбирают цель для плевка только внутри клетки. Вениамин не плюётся.)


2. Однажды я жарил оладьи. Когда я начал переворачивать одну из них, она никак не входила на старое место. Оладьи удалось вновь разместить на сковороде, лишь перевернув их все.
а) Докажите, что всегда можно уложить перевернутые оладьи на круглой сковороде, на которой они лежали раньше.
б) Приведите пример, в котором нельзя ни одну из оладий, перевернув, уложить на старое место.


3. На физическом кружке учитель поставил такой эксперимент. Он разместил на чашечных весах 16 гирек массами 1, 2, 3, . . . , 16 граммов так, что одна из чаш перевесила. Пятнадцать учеников по очереди выходили из класса и забирали с собой по одной гирьке, причём после выхода каждого ученика весы меняли своё положение (каждый раз перевешивала не та чаша весов, что в предыдущий раз). Какая гирька могла остаться на весах (укажите все возможности)?

4. Какое наибольшее число белых шашек можно расставить на доске 8 x 8 так, чтобы поставленная в некоторую клетку чёрная шашка смогла побить их все за один ход?


5. Билет на проезд в общественном транспорте считается счастливым, если в его шестизначном номере сумма первых трёх цифр равна сумме последних трёх цифр.
Как-то между тремя приятелями состоялся такой разговор:
– Однажды мне попался счастливый билет, у которого каждая цифра начиная со второй была либо вдвое больше, либо вдвое меньше предыдущей, – заявил Петя.
– А мне, помню, достался счастливый билет, у которого каждая цифра начиная со второй была либо вдвое больше, либо втрое меньше преды­ ущей, – сообщил Коля.
– А у моего счастливого билета каждая цифра начиная со второй была либо вдвое больше, либо вчетверо меньше предыдущей, – сказал Вася.
Чьи слова могли быть правдой?

Облако тэгов:

Календарь

April 2018
S M T W T F S
1234567
891011121314
15161718192021
22232425262728
2930     
Powered by LiveJournal.com
Designed by Tiffany Chow